
7 -i65 994 A THEOREM ON ATCNGS IN THE PLANE 2 SOME PLANAR 1/1
CONSIDERATIONSCU) VANDERBILT UNIV NASHVILLE TN
M D PLUMMER 1985 W88914-85-K-8488

UNCLASSIFIED F/G 121 L

Eu".lsilIIIiliIIIIIIIII



Jai

..

* 
-~~136 u

11112.0

LL

llull-

111.25 J 1.4 1 Lb.

MICROCOPY RESOLUTION 1ESII CHARI

,0

0

%
1

-.- )- - - -



2. SOME PLANAR CONSIDERATIONS

A THEOREM ON MATCHINGS IN THE PLANE

Dedicated to the memory of Gabriel Dirac

by DTIC
01 Michael D. Plummer*- ELECTE
It) Vanderbilt University APR 0 3 1986
CNashville, Tennessee, USA

1. Introduction and terminology

Let G be a graph with IV(G) = p points and IE(G)I = q lines. A
matching in G is any set of lines in E(G) no two of which are adjacent.
Matching M in G is said to be a perfect matching, or p.m., if every
point of G is covered by a line of M. Let G be any graph with a perfect
matching and suppose positive integer n < (p - 2)/2. Then G is n-
extendable if every matching in G containing n lines is a subset of a
p.m.

- The concept of n-extendability gradually evolved from the study of
, elementary bipartite graphs (which are 1-extendable). (see Hetyei (1964),

LovLsz and Plummer (1977)), /and then of arbitrary 1-extendable (or
*-..' matching-covered") graphs'by Lovasz (1983). The study of n-extenda-

bility for arbitrary n was begun by the author (1980).
,*"-:.. . : --In this paper-we are-concerned with matchings in planar graphs.

When we speak of an imbedding of planar graph G in the plane, we
mean a topological imbedding in the usual sense (see White (1973))'and
would remind the reader that such an imbedding is necessarily 2-cell.
(See Youngs (1963).)' If we wish to refer to a planar graph G together
with an imbedding of G in the plane, we shall speak of the plane graph

, G.

G.The main result of 'this paper is to show that no planar graph is
t;3-extendable.

Throughout this paper, we will assume that all graphs are connected,
that mindeg(G) > 3 and that mindeg *(G) >! 3, where inindeg *(G)
denotes the size of a smallest face in an imbedding of G. For any
additional terminology, we refer the reader to Harary (1969), to Bondy
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and Murty (1976) or to Lovgsz and Plummer (1985).

2. Some planar considerations

One of our main tools will be the so-called theory of Euler contribu-

tions initiated by Lebesgue (1940) and further developed by Ore (1967)
and by Ore and Plummer (1969). Let v be any point in a plane graph

G. Define the Euler contribution of v, 4'(v), by

degi

2 Xi

• where the sum runs over the face angles at point v and xz denotes the

size of the ith face at v.
We shall require several simple lemmas. We include the proofs for

Athe sake of completeness. The first is essentially due to Lebesgue (1940).

2.1. LEMMA. If G is a connected plane graph, then F,, c(v) = 2.

PROOF. Let p = IV(G)I, q = IE(G)I and r be the number of faces
in any planar imbedding of G. Then

1: E~j deg V+ degv:"~~ = 1+ -= - q + r 2,
2 Xi

by Euler's classical formula.

2.2. LEMMA. Let G be a connected plane graph with mindeg*(G)

3. Then for all v E V(G), 4'(v) < 1- degv/6.

PROOF. Since zi _> 3 for all i, we have '?(v) <1 - deg v/2 + deg v/3

and the result follows.

It follows from Lemma 2.1 that there must exist a point v in any

plane graph G with 4(v) > 0. Let us agree to call any such point
v E V(G) a control point (since such a point will be seen to "control"

or limit, the degree of matching extendability in G).
It is well-known, of course, that any planar graph has points v with

deg v < 5. We would like to emphasize, however, that Lemma 2.2 tells 0

, us that we must have control points with degree 3, 4 or 5. Moreover, for
* any control point v, we have the inequality

deg-- 1
>.. -degv-1. (1) ity Codes
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3. THE MAIN RESULT 3

Since we are assuming that each z > 3, inequality (1) yields the
following three diophantine inequalities:

degv =3 : Z

degv = 4" :L > 2- 1 =1
degv = : > 1

We shall see in the next section that we shall need solutions to these
inequalities only in the deg v = 4 and deg v = 5 cases. The solutions for
these two inequalities are listed below:

degv=4" (3,3,3, x) x-- 3,4...

(3,3,4, x) z= 4,...,11
(3, 3, 5, z) x=-5,6,7
(3, 4, 4, x) --4),5

degv =5: (3, 3, 3, 3, x) z 3,4,5.

(Note that for the sake of conciseness, we list each solution in mon-
otone non-decreasing order, although other cyclic orderings of faces of

*these sizes about a point are certainly possible and must be considered.
See Ore and Plummer (1969).)

3. The main result

We shall need two basic results about n-extendable graphs. The
proofs may be found in Plummer (1980).

3.1. THEOREM. If n > 2 and G is n-eztendable, then G is also
(n - 1)-extendable.

3.2. THEOREM. If n 2 1 and G is n-eztendable, then G is (n± 1)-
connected. U

Of course, since no planar graph can be 6-connected, this immedi-
ately tells us that no planar graph is 5-extendable. However, we now
show that this result can be sharpened.

3.3. THEOREM. No planar graph is 3-eztendable.

PROOF. Suppose G is a 3-extendable plane graph. Then by Theorem
V% 3.2, graph G is 4-connected and hence mindegv > 4. But then by the

results of Section 2, graph G must contain a control point v of degree
four or five. The possible facial configurations about point v are listed in

9'e



FIGURE 3.1.

FIGURE 3.2.

FIGURE 3.3.

Section 2 and we proceed to treat each. (Note that since our graphs are,
in particular, 3-connected here that the subgraph induced by the set of
all points adjacent to our control point v is always a cycle.)

(3,3, 3, x). In this case we must have the configuration of Figure 3.1
and we see that {e, .f) cannot be extended to a perfect matching. Hence
G is not 2-extendable. But then G is not 3-extendable by Theorem 3.1
and.we have a contradiction.

(3, 3, 4, z). Here z > 4 and we must have either the configuration
of Figure 3.2a or 3.2b. In the former, {e, f, g} does not extend to a
perfect matching. In the latter, {C, f } does not extend and again G is not
3-extendable by Theorem 3.1. So in either case we get a contradiction.

(3, 3, 5, z). Here z > 5 and we have the configurations of Figure 3.3aL. and 3.3b. In the former, {e, f, g} does not extend and in the latter {e, f}
,g does not extend. As before, we have a contradiction.

(3,4,4, z). Here z > 4 and we must have the configurations of

Figure 3.4a or 3.4b. In both, the matchings {e, f, g} do not extend, a

* . . . . . . ** -. , -
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Concluding remarks

FIGURE 3.4.

FIGURE 3.5.

contradiction.
(3, 3, 3, 3, z). Here x > 3 and we have the configuration of Figure

3.5. Let us label the neighbors of v in clockwise order as u1 , U2 ,113 , U4

and u .
Suppose there is a point w vI{U2, Us, u 4 ,us, v}, but w is adjacent

to ul. Then {U1 W, U2 U3 , u 4u5 } is a matching of size three which cannot
extend to a perfect matching, a contradiction. So the neighborhood of
u 1 , N(ui) 9_ {U2, U3, U4, U5, V}. We know that {U 2 , V, U5} 9 N(ui), but
since G is 4-connected, we have that degul _ 4, and so ul is adjacent
to at least one of U3 and U4 . Suppose ul is adjacent to u3 . Then
deg U2 = 3, a contradiction.

By symmetry, a similar contradiction is reached if ul is adjacent to

- i,-4  U

Concluding remarks

In the decomposition theory of graphs with perfect matchings (see
Lovdsz and Plummer (1985)), two important classes of "building blocks"
are (1) 1-extendable bipartite graphs and (2) bicritical graphs. A graph G
is bicritical if G - u - v has a perfect matching for all choices of distinct
points u and v. There is a nice relationship among 2-extendable graphs,
1-extendable bipartite graphs and bicritical graphs. In particular, we
have the following result. For the proof, see Plummer (1980).
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6

FIGURE 4.1. A 3-extendable toroidal graph

4.1. THEOREM. If graph G is 2-extendable, then G is either (a)
1-extendable and bipartite or (b) bicritical. U

(Note that no bicritical graph can be bipartite, so the two clases in the
conclusion of the preceding theorem are disjoint.)

Bicritical graphs - especially those which are 3-connected - are
still not completely understood. Thus in light of Theorem 4.1 the study
of graphs which are n-extendable, for n > 2, may help us to better
understand the structure of 3-connected bicritical graphs, as well as being
of interest in its own right.

The present paper is concerned with the planar case. Although we
now know that no planar graph is 3-extendable, there are many such
graphs which are 2-extendable. The dodecahedron, the icosahedron and
the cube are but three familiar examples. We shall present a more
detailed study of 2-extendable planar graphs in a subsequent paper.

Let us conclude by noting that there do exist 3-extendable graphs
which can be imbedded on the surface of the torus. The Cartesian

products of two even cycles C2,, X C2 , (m, n > 2) are such graphs.
See Figure 4.1 for an imbedding of C4 x C 4 .
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2. SOME PLANAR CONSIDERATIONS

A THEOREM ON MATCHINGS IN THE PLANE

Dedicated to the memory of Gabriel Dirac

by
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1. Introduction and terminology

Let G be a graph with IV(G)I = p points and iE(G)I = q lines. A

matching in G is any set of lines in E(G) no two of which are adjacent.
Matching M in G is said to be a perfect matching, or p.m., if every

point of G is covered by a line of M. Let G be any graph with a perfect

matching and suppose positive integer n < (p - 2)/2. Then G is n-

extendable if every matching in G containing n lines is a subset of a

p.m.

The concept of n-extendability gradually evolved from the study of

elementary bipartite graphs (which are 1-extendable) (see Hetyei (1964),
Lov sz and Plummer (1977)), and then of arbitrary 1-extendable (or

"matching-covered") graphs by Lov~isz (1983). The study of n-extenda-

bility for arbitrary n was begun by the author (1980).

In this paper we are concerned with matchings in planar graphs.
When we speak of an imbedding of planar graph G in the plane, we
mean a topological imbedding in the usual sense (see White (1973)) and

would remind the reader that such an imbedding is necessarily 2-cell.

(See Youngs (1963).) If we wish to refer to a planar graph G together

with an imbedding of G in the plane, we shall speak of the plane graph

G.
The main result of this paper is to show that no planar graph is

3-extendable.

Throughout this paper, we will assume that all graphs are connected.

v that mindeg(G) _! 3 and that mindeg"(G) > 3, where mindeg '((;)

denotes the size of a smallest face in an imbedding of G. For an:

additional terminology, we refer the reader to Harary (1969), to Bondy
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and Murty (1976) or to Lovisz and Plummer (1985).

2. Some planar considerations

One of our main tools will be the so-called theory of Euler contribu-
* - tions initiated by Lebesgue (1940) and further developed by Ore (1967)

and by Ore and Plummer (1969). Let v be any point in a plane graph
G. Define the Euler contribution of v, (D(v), by

degg v
4d(v) = 1 v c I-

2 Xi

where the sum runs over the face angles at point v and x, denotes the
size of the ith face at v.

We shall require several simple lemmas. We include the proofs for
the sake of completeness. The first is essentially due to Lebesgue (1940).

2.1. LEMMA. If G is a connected plane graph, then E,, 4)(v) = 2.

PROOF. Let p -IV(G)j, q = IE(G)I and r be the number of faces
in any planar imbedding of G. Then

D(v)=de- + -g- qdr 2,

2 xi
V V i=-1

by Euler's classical formula. n

2.2. LEMMA. Let G be a connected plane graph with mindeg *(G) _
3. Then for all v E V(G), 4(v) _ I - degv/6.

PROOF. Since xi _> 3 for all i, we have ('(v) _ 1 - deg v/2 + deg v/3
and the result follows. n

It follows from Lemma 2.1 that there must exist a point v in any
plane graph G with (4(v) > 0. Let us agree to call any such point
v E V(G) a control point (since such a point will be seen to "control"
or limit, the degree of matching extendability in G).

It is well-known, of course, that any planar graph has points t' with
deg v < 5. We would like to emphasize, however, that Lemma 2.2 tells
us that we must have control points with degree 3, 4 or 5. Moreover, for
any control point v, we have the inequality

degv 1 1
- -degv- 1. (1)
Xi 2
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3. THE MAIN RESULT 3

Since we are assuming that each xi >! 3, inequality (1) yields the
following three diophantine inequalities:

~3>3il
deg v = 3: - i 22
deg v -= 4: "' >= 2 -- 1--L-.E s 1 = idegv = 5" E5 _ >

We shall see in the next section that we shall need solutions to these
inequalities only in the deg v = 4 and deg v = 5 cases. The solutions for

* these two inequalities are listed below:

degv =4 (3, 3, 3, x) x = 3, 4...
(3, 3, 4, x) x= 4,...,ll
(3,3,5, x) x= 5,6,7
(3, 4, 4, x) x=4,5

degv 5 (3, 3, 3, 3, x) x = 3,4,5.
(Note that for the sake of conciseness, we list each solution in mon-

otone non-decreasing order, although other cyclic orderings of faces of
these sizes about a point are certainly possible and must be considered.
See Ore and Plummer (1969).)

3. The main result

We shall need two basic results about n-extendable graphs. The
proofs may be found in Plummer (1980).

3.1. THEOREM. If n > 2 and G is n-extendable, then G is also
(n - 1)-extendable. n

3.2. THEOREM. If n > 1 and G is n-extendable, then G is (n+ 1)-
connected. n

Of course, since no planar graph can be 6-connected, this immedi-
ately tells us that no planar graph is 5-extendable. However, we now
show that this result can be sharpened.

3.3. THEOREM. No planar graph is 3-extendable.

PROOF. Suppose G is a 3-extendable plane graph. Then by Theorem
3.2, graph G is 4-connected and hence inindeg v > 4. But then by the
results of Section 2, graph G must contain a control point v of degree
four or five. The possible facial configurations about point v are listed in

---------------------------
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FIGURE 3.1.

FIGURE 3.2.

FIGURE 3.3.

Section 2 and we proceed to treat each. (Note that since our graphs are,
in particular, 3-connected here that the subgraph induced by the set of
all points adjacent to our control point v is always a cycle.)

(3, 3, 3, x). In this case we must have the configuration of Figure 3.1

and we see that {e, f} cannot be extended to a perfect matching. Hence

G is not 2-extendable. But then G is not 3-extendable by Theorem 3.1

and we have a contradiction.
(3, 3, 4, x). Here x > 4 and we must have either the configuration

of Figure 3.2a or 3.2b. In the former, {e,f,g} does not extend to a
perfect matching. In the latter, {e, f} does not extend and again G is not.
3-extendable by Theorem 3.1. So in either case we get a contradiction.

(3, 3, 5, x). lere x > 5 and we have the configurations of Figure :3.3a

and 3.3b. In the former, {e, f, g} does not extend and in the latter {e, f}
does not extend. As before, we have a contradiction.

(3, 4, 4, x). Here x > 4 and we must have the configurations of'
Figure 3.4a or 3.4b. In both, the matchings {e,f,g} do not extend, a
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Concluding remarks

FIGURE 3.4.

FIGURE 3.5.

contradiction.

(3, 3, 3, 3, x). Here x > 3 and we have the configuration of Figure

3.5. Let us label the neighbors of v in clockwise order as u1 , u 2 , U3 , u 4

and u .

Suppose there is a point w u9, u3 ? ?14 , 1t5 , v}, but w is adjacent

to ul. Then {uI w, u2 u 3 , u 4 u 5} is a matching of size three which cannot,

extend to a perfect matching, a contradiction. So the neighborhood of

ul, N(ui) C {,, u 3 , u4, u 5 , v}. We know that {u 2 , v, U5 } C N(u 1 ), but

since G is 4-connected, we have that deg it, _> 4, and so i1 is adjacent

to at least one of u3 and a 4 . Suppose it, is adjacent to a 3 . Then

" deg u 2 = 3, a contradiction.

By symmetry, a similar contradiction is reached if ul is adjacent to

U 4 .

Concluding remarks

In the decomposition theory of graphs with perfect matchings (see

Lovisz and Plummer (1985)), two important classes of "building blocks"

are (1) I-extendable bipartite graphs and (2) bicritical graphs. A graph (G

is bicritical if G - u - v has a perfect matching for all choices of distinct

points u and v. There is a nice relationship among 2-extendable graph.,

I-extendable bipartite graphs and bicritical graphs. In particular, we

have the following result. For the proof, see Plummer (1980).
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,41 FIGURE 4.1. A 3-extendable toroidal graph

4.1. THEOREM. If graph G is 2-extendable, then G is either (a)
S1-extendable and biPartite or (b) bicritical. n

(Note that no bicritical graph can be bipartite, so the two classes in the

conclusion of the preceding theorem are disjoint.)
Bicritical graphs - especially those which are 3-connected - are

still not completely understood. Thus in light of Theorem 4.1 the study
()f graphs which are n-extendable, for n > 2, may help us to better

understand the structure of 3-connected bicritical graphs, as well as being

of interest in its own right.

The present paper is concerned with the planar case. Although we
now know that no planar graph is 3-extendable, there are many such
graphs which are 2-extendable. The dodecahedron, the icosahedron and

the cube are but three familiar examples. We shall present a more
detailed study of 2-extendable planar graphs in a subsequent paper.

Let us conclude by noting that there do exist 3-extendable graphs
which can be imbedded on the surface of the torus. The Cartesian

products of two even cycles C2m X C2n, (ra, n > 2) are such graphs.
See Figure 4.1 for an imbedding of C4 X C4.
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